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Reliability coefficients often take the form of intraclass correlation coefficients. 
In this article, guidelines are given for choosing among six different forms of 
the intraclass correlation for reliability studies in which n targets are rated by k 
judges. Relevant to the choice of the coefficient are the appropriate statistical 
model for the reliability study and the applications to be made of the reliability 
results. Confidence intervals for each of the forms are reviewed. 

Most measurements in the behavioral 
sciences involve measurement error, but 
judgments made by humans are especially 
plagued by this problem. Since measurement 
error can seriously affect statistical analysis 
and interpretation, it is important to assess 
the amount of such error by calculating a 
reliability index. Many of the reliability 
indices available can be viewed as versions of 
the intraclass correlation, typically a ratio 
of the variance of interest over the sum of the 
variance of interest plus error (Bartko, 1966 ; 
Ebel, 1951 ; Haggard, 1958). 

There are numerous versions of the intraclass 
correlation coefficient (ICC) that can give 
quite different results when applied to the 
same data. Unfortunately, many researchers 
are not aware of the differences between the 
forms, and those who are often fail to report 
which form they used. Each form is appropriate 
for specific situations defined by the experi- 
mental design and the conceptual intent of 
the study. Unfortunately, most textbooks 
(e.g., Hayes, 1973 ; Snedecor & Cochran, 1967 ; 
Winer, 1971) describe only one or two forms 
of the several possible. Making the plight of 
the researchers worse, some of the older 

references (e.g., Haggard, 1958) contain 
mistakes that have been corrected in a variety 
of forums (Bartko, 1966; Feldt, 1965). 

In this article, we attempt to give a set of 
guidelines for researchers who have use for 
intraclass correlations. Six forms of the ICC 
are discussed here. We discuss these forms in 
the context of a reliability study of the ratings 
of several judges. This context is a special case 
of the one-facet generalizability study (G 
study) discussed by Cronbach, Gleser, Nanda, 
and Rajaratnam (1972). The results we 
present are applicable to other one-facet 
studies, but we find the case of judges most 
compelling. 

The guidelines for choosing the appropriate 
form of the ICC call for three decisions: (a) 
Is a one-way or two-way analysis of variance 
(ANOVA) appropriate for the analysis of the 
reliability study? (b) Are differences between 
the judges' mean ratings relevant to the 
reliability of interest? (c) Is the unit of analysis 
an individual rating or the mean of several 
ratings? The first and second decisions pertain 
to the appropriate statistical model for the 
reliability study, and the second and the third 
to the potential use of its results. 

This work was supported in part by Grant 1 R01 MH 
28655-01A1 PCR from the National Institute of 
Mental Health. 
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York, New York 10032. 

Models for Reliability Studies 

In a typical interrater reliability study, each 
of a random sample of n targets is rated 
independently by k judges. Three different 
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Table  1 
Analysis of Variance and Mean Square Expectations for One- and Two- W a y  Random EJects 
and Two- W a y  Mixed Model Designs 

Source of 
variation 

One-way Two-way Two-way 
random random mixed model 
effects effects for for Case 3a 

df  M S  for Case 1 Case 2 

Between targets n - 1  B M S  k u ~ ~  + aw2 k a ~ ~  + ur2 + re2 kuT2 + ue2 
Within target n(k - 1 )  W M S  uw2 U J ~  + vr2 + ve2 e~~ + f u ~ ~  + re2  

Between judges (k - 1 )  J M S  - . nu.r2 + vr2 + C T E ~  no? + fur2 + oe2 
Residual ( n  - 1 )  (k - 1 E M S  ur2 + ug2 fur2 + .e2 

1 a f = k / ( k  - 1 )  for the last three entries in this column. 

cases of this kind of study can be defined: 
1. Each target is rated by a different set of 

k judges, randomly selected from a larger 
population of judges. 

2. A random sample of k judges is selected 
from a larger population, and each judge rates 
each target, that is, each judge rates n targets 
altogether. 

3. Each target is rated by each of the same k 
judges, who are the only judges of interest. 

Each kind of study requires a separately 
specified mathematical model to describe its 
results. The models each specify the decomposi- 
tion of a rating made by the ith judge on the 
jth target in terms of various effects. Among 
the possible effects are those for the ith 
judge, for the j th  target, for the interaction 
between judge and target, for the constant 
level of ratings, and for a random error com- 
ponent. Depending on the way the study is 
designed, different ones of these effects are 
estimable, different assumptions must be made 
about the estimable effects, and the structure 
of the corresponding ANOVA will be different. 
The various models that result from the above 
cases correspond to the standard ANOVA 

models, as discussed in a text such as Hayes 
(1973). We review these models briefly below. 

Under Case 1, the effects due to judges, to 
the interaction between judge and target, 
and to random error are not separable. Let xo 
denote the ith rating (i = 1, . . ., k) on the 
j th  target (j = 1, . . . , n). For Case 1, we 
assume the following linear model for xij: 

In this equation, the component p is the 
overall population mean of the ratings; bj  
is the difference from p of the j th  target's 
so-called true score (i.e., the mean across 
many repeated ratings on the jth target); 
and wij is a residual component equal to the 
sum of the inseparable effects of the judge, 
the Judge X Target interaction, and the error 
term. The component bj is assumed to vary 
normally with a mean of zero and a variance 
of ( r ~ ~  and to be independent of all other com- 
ponents in the model. I t  is also assumed that 
the wij terms are distributed independently 
and normally with a &an of zero and a 
variance of (rw2. The expected mean squares 
in the ANOVA table appropriate to this kind of 
study (technically a one-way random effects 
layout) appear under Case 1 in Table 1. 

The models for Case 2 and Case 3 differ 
from the model for Case 1 in that the com- 
ponents of wij are further specified. Since the 
same k judges rate all n targets, the component 
representing the ith judge's effect may be 
estimated. The equation 

is appropriate for both Case 2 and Case 3. 
In Equation 2, the terms xij, p, and b j  are 
,defined as in Equation 1 ;  ai is the difference 
from p of the mean of the ith judge's ratings; 
(ab)ij is the degree-.to which the ith judge 
departs from his or her usual rating tendencies 
when confronted by the j th  target; and eij is 
the random error in the ith judge's scoring of 
the j th  target. In both Cases 2 and 3 the target 
component bj is assumed to vary normally 
with a mean of zero and variance ( r ~ ~  (as in 
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Case I), and the error terms eij are assumed 
to be independently and normally distributed 
with a mean of zero and variance u,2. 

Case 2 differs from Case 3, however, with 
regard to the assumptions made concerning ai 
and (ab)ij in Equation 2. Under Case 2, a; is a 
random variable that is assumed to be normally 
distributed with a mean of zero and variance 
(rJ2; under Case 3, it is a fixed effect subject 
to the constraint 2ai = 0. The parameter corre- 
sponding to (r J~ is OJ2 = 2ai2/ (k - 1). 

In the absence of repeated ratings by each 
judge on each target, the components (ab)ij 
and eij cannot be estimated separately. Never- 
theless, they must be kept separate in Equation 
2 because the properties of the interaction are 
different in the two cases being considered. 
Under Case 2, all the components (ab)ii, where 
i = 1, . . ., k ; j  = 1, . . ., n, can be assumed 
to be mutually independent with a mean of 
zero and variance a12. Under Case 3, however, 
independence can only be assumed for inter- 
action components that involve different 
targets. For the same target, say the jth, the 
components are assumed to satisfy the 
constraint 

k 

C (ab)ii = 0. 
i=l 

A consequence of this constraint is that 
any two interaction components for the same 
target, say (ab)ij and (ab)ifj, are negalively 
correlated (see, e.g., ScheffC, 1959, section 8.1). 
The reason is that because of the above 
constraint, 

k 

0 = var (ab) ij] = k var [(ab) ij] 
i=l 

say, where c is the common covariance between 
interaction effects on the same target. Thus 

The expected mean squares in the ANOVA 

for Case 2 (technically a two-way random 
effects layout) and Case 3 (technically a two- 
way mixed effects layout) are shown in the 
final two columns of Table 1. The differences 
are that the component of variance due to the 
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interaction ((rr2) contributes additively to each 
expectation under Case 2, whereas under 
Case 3, it does not contribute to the expected 
mean square between targets, and it con- 
tributes additively to the other expectations 
after multiplication by the factor f = k/ (k- I) .  

In the remainder of this article, various 
in traclass correlation coefficients are defined 
and estimated. A rigorous definition is adopted 
for the ICC, namely, that the ICC is the 
correlation be tween one measurement (either 
a single rating or a mean of several ratings) 
on a target and another measurement ob- 
tained on that target. The ICC is thus a 
bona fide correlation coefficient that, as is 
shown below, is of ten but not necessarily 
identical to the component of variance due 
to targets divided by the sum of it and other 
variance components. In  fact, under Case 3, 
it is possible for the population value of the 
ICC to be negative (a phenomenon pointed 
out some years ago by Sitgreaves [1960]). 

Decision 1 : A One- or Two-Way 
Analysis of Variance 

In selecting the appropriate form of the ICC, 
the first step is the specification of the ap- 
propriate statistical model for the reliability 
study (or G study). Whether one analyzes the 
data using a one-way or a two-way ANOVA 

depends on whether the study is designed 
according to Case 1, as described earlier, or 
according to Case 2 or 3. Under Case 1, the 
one-way ANOVA yields a between-targets mean 
square (BMS) and a within-target mean 
square (WMS). 

From the expectations of the mean squares 
shown for Case 1 in Table 1, one can see that 
WMS is as unbiased estimate of aw2; in 
addition, it is possible to get an unbiased 
estimate of the target variance by sub- 
tracting WMS from BMS and dividing the 
difference by the number of judges per target. 
Since the w;j terms in the model for Case 1 
(see Equation 1) are assumed to be inde- 
pendent, one can see that ( r ~ ~  is equal to the 
covariance between two ratings on a target. 
Using this information, one can write a 
formula to estimate p, the population value 
of the ICC for Case 1. Because the covariance 
of the ratings is a variance term, the index 
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I in this case takes the form of a variance ratio : 

The estimate, then, takes the form 

I BMS - WMS 

i 'CC(l' = BMS + (k - 1)WMS9 

/ where k is the number of judges rating each 
target. I t  should be borne in mind that while 

( ICC(1, 1) is a consistent estimate of p, it is 
biased (cf. Olkin & Pratt, 1958). 1 If the reliability study has the design of 
Case 2 or 3, a Target X Judges two-way 1 ANOVA is the appropriate mode of analysis. 
This analysis partitions the within-target sum 
of squares into a between-judges sum of 
squares and a residual sum of squares. The 
corresponding mean squares in Table 1 are 
denoted J M S  and EMS. 

It is crucial to note that the expectation 
of BMS under Cases 2 and 3 is different from 
that under Case 1, even though the compu- 
tation of this term is the same. Because the 
effect of judges is the same for all targets under 1 Cases 2 and 3, interjudge variability does not 

I affect the expectation of BMS. An important 

1 
practical implication is that for a given 
population of targets, the observed value of 
BMS in a Case 1 design tends to be larger than 
that in a Case 2 or Case 3 design. 

There are important differences between 
the models for Case 2 and Case 3. Consider 
Case 2 first. From Table 1 one can see that an 

( estimate of the target variance uTZ can be 
obtained by subtracting E M S  from BMS and 
dividing the difference by k. Under the assump- 
tions of Case 2 that judges are randomly 
sampled, the covariance between two ratings 
on a target is again uT2, and the expression for 

Table 2 
Four Ratings on Six Targets 

Target 1 2 3 4 

Table 3 
Analysis of Variance for Ratings 

- - 

Source of variance df MS 

Between targets 5 11.24 
Within target 18 6.26 

Between judges 3 32.49 
Residual 15 1.02 

the parameter p is again a variance ratio: 

I t  is estimated by 

ICC(2, 1) 

- BMS- EMS 
-BMS+ (k- l)EMS+k (JMS- EMS)/n9 

where n is the number of targets. To our 
knowledge, Rajaratnam (1960) and Bartko 
(1966) were the first to give this form. Like 
ICC(1, I) ,  ICC(2, 1) is a biased but consistent 
estimator of p. 

As we have discussed, the statistical model 
for Case 3 differs from Case 2 because of the 
assumption that judges are fixed. As the reader 
can verify from Table 1, one implication of this 
is that no unbiased estimator of uT2 is available 
when U I ~  > 0. On the other hand, under Case 
3, ur2 is no longer equal to the covariance 
between ratings on a target, because of the 
correlated interaction terms in Equation 2. 
Because the interaction terms on the same 
target are correlated, as shown in Equation 3, 
the actual covariance is equal to uT2 - -I*/ 

(k - 1). Another implication of the Case 3 
assumption is that the total variance is equal 
to U T ~  + r r 2  + U E ~ ,  and thus the correlation is 

This is estimated consistently but with bias by 

BMS - EMS 
'CC(3' I )  = BMS + (A - 1)EMS' 

As is discussed in the next section, the interpre- 
tation of ICC(3, 1) is quite different from that 
of ICC (2, 1). 

I t  is not likely that ICC(2, 1) or ICC(3, 1) 
will ever be erroneously used in a Case 1 study, 
since the appropriate mean squares would not 
be available. The misuse of ICC(1, 1) on data . 
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Table 4 
Correlation Estimates From S i x  ~ n t r a c l a s s  
Correlation Forms 

Form Estimate 

ICC (1, 1) .17 
ICC (2, 1) .29 
ICC (3, 1) .71 
ICC (1,4) ' .44 
ICC (2,4) .62 
ICC (3 ,4)  .91 

from Case 2 or Case 3 studies is more likely. 
A consequence of this mistake is the under- 
estimation of the true correlation p. For the 
same set of data, ICC(1, 1) will, on the average, 
give smaller values than ICC (2, 1) or TCC (3,l). 

To help the reader appreciate the differences 
among these coefficients and also among the 
two coefficients to be discussed later, we apply 
the various forms to an example. Table 2 gives 
four ratings on six targets, Table 3 shows the 
ANOVA table, and Table 4 gives the calculated 
correlation estimates for various cases. 

Given the choice of the appropriate index, 
tests of the null hypothesis-that p = +can 
be made, and confidence intervals around the 
parameter can be computed. When using 

ICC(1, I), the test that p is different from zero 
is provided by calculating Fo = BMSIWMS 
and testing it on (n - 1) and n(k - 1) 
degrees 'of freedom. A confidence interval for p 
can be computed as follows : Let F1-,(i, j )  
denote the (1 - p)  -100th percentile of the F 
distribution with i and j degrees of freedom, 
and define 

FU = Fo.F1-+,[n(k - I), (n - I)] (4) 
and 

FL = Fo/Fl-+,[(n - I), n(k - I)]. (5) 

Then 

FL - 1 Fu - 1 
FL + (k - 1) < p < F u +  (k-  1) (6) 

is a (1 - a)  - 100% confidence interval for p. 

When ICC(2, 1) is appropriate, the signifi- 
cance test is again an F test, using F, 
= BMS/EMS on (n - 1) and (k - 1) (n - 1) 
degrees of freedom. The confidence interval 
for ICC (2, 1) is more complicated than that for 
ICC(1, I), since the index is a function of 
three independent mean squares. Following 
Satterthwaite (1946), Fleiss and Shrout (1978) 
have derived an approximate confidence 
interval. Let 

where F J = JMS/EMS and = ICC(2, 1). If we define F* = FI-+,[(~ - I), v] and F, 
= F1-+u[~, (n - I)], then 

n(BMS - F*EMS) n(F,BMS - EMS) 
F*[kJMS + (kn - k - n)EMS] + nBMS < < kJMS + (kn - k - n)EMS + nF,BMS ( 7 )  

gives an approximate (1 - a )  100% confi- 
dence interval around p. 

Finally, when appropriate, ICC(3, 1) is 
tested with F, = BMSIEMS on (n - 1) and 
(n - 1) (k - 1) degrees of freedom. If we 
d e h e  

then 
F L  - 1 Fu - 1 

FL + (k - 1) < < FU + (k - 1) 

is a (1 - a). 100% confidence interval for p. 

Decision 2: Can Effects Due to Judges Be 
Ignored in the Reliability Index? 

In the previous section we stressed the 
importance of distinguishing Case 1 from 
Cases 2 and 3. In  this section we discuss the 
choice between Cases 2 and 3. Most simply 
the choice is whether the raters are considered 
random effects (Case 2) or fixed effects (Case 
3). Thus, under Case 2 we wish to generalize 
to other raters within. some population, 
whereas under Case 3 we are interested only 
in a single rater or a fixed set of k raters. Of 
course, once the appropriate case is identified, 



INTRACLASS CORRELATIONS 425 

the choice of indices is between ICC(2, 1) and 
ICC(3, I), as discussed before. 

Most often, investigators would like to say 
that their rating scale can be effectively used 
by a variety of judges (Case 2), but there are 
some instances in which Case 3 is appropriate. 
Suppose that the reliability study (the G 
study) precedes a substantive study (the 
decision study in Cronbach et a1.k terms) 
in which each of the k judges is responsible 
for rating his or her own separate random 
sample of targets. If all the data in the final 
study are to be combined for analysis, the 
judges' effects will contribute to the variability 
of the ratings, and the random model with 
its associated ICC(2, 1) is appropriate. If, on 
the other hand, each judge's ratings are 
analyzed separately, and the separate results 
pooled, then interjudge variability will not 
have any effect on the final results, and the 
model of fixed judge effects with its associate 
ICC (3, 1) is appropriate. 

Suppose that the substantive study involves 
a correlation between some reliable variable 
available for each target and the variable 
derived from the judges' ratings. One may 
either determine the correlation for the entire 
study sample or determine it  separately for 
each judge's subsample and then pool the 
correlations using Fisher's z transformation. 
The variability of the judges' effects must be 
taken into account in the former case, but 
can be ignored in the latter. 

Another example 'is a comparative study 
in which each judge rates a sample of targets 
from each of several groups. One may either 
compare the groups by combining the data 
from the k judges (in which case the component 
of variance due to judges contributes to 
variability, and the random effects model 
holds) or compare the groups separately for 
each judge and then pool the differences (in 
which case differences between the judges' 
mean levels 'of rating do not contribute to 
variability, and the model -of fixed judge 
effects holds). 

When the judge variance is ignored, the 
correlation index can be interpreted in terms 
of rater consistency rather than rater agree- 
ment. Researchers of the rating process may 
choose between ICC(3, 1) and ICC(2, 1) on 

the basis of which of these concepts they wish 
to measure. If, for example, two judges are 
used to rate the same n targets, the consistency 
of the two ratings is measured by ICC(3, I), 
treating the judges as fixed effects. To measure 
the agreement of these judges, ICC(2, 1) is 
used, and the judges are considered random 
effects; in this instance the question being 
asked is whether the judges are interchangeable. 

Bartko (1976) advised that consistency is 
never an appropriate reliability concept for 
raters; he preferred to limit the meaning of 
rater reliability to agreement. Algina (1978) 
objected to Bartko's restriction, pointing out 
that generalizability theory encompasses the 
case of raters as fixed effects. Without directly 
addressing Algina's criticisms, Bartko (1978) 
reiterated his earlier position. The following 
example illustrates that Bartko's blanket 
restriction is not only unwarranted but can 
also be misleading. 

Consider a correlation study in which one 
judge does all the ratings or one set of judges 
does all the ratings and their mean is taken. 
In  these cases, judges are appropriately con- 
sidered fixed effects. If the investigator is 
interested in how much the correlations might 
be attenuated by lack of reliability in the 
ratings, the proper reliability index is ICC (3, I), 
since the correlations are not affected by 
judge mean differences in this case. In  most 
cases the use of ICC(2, 1) will result in a lower 
value than when ICC(3, 1) is used. This 
relationship is illustrated in Tables 2, 3, and 4. 

Although we have discussed the justification 
of using ICC(3, 1) with reference to the final 
analysis of a substantive study, in many cases 
the final analytic strategy may rest on the 
reliability study itself. Consider, for example, 
the case discussed above in which each judge 
rates a different subsample of targets. In this 
instance the investigator can either calculate 
'correlations across the total sample or calculate 
them within subsamples and pool them. If 
the reliability study indicates a large dis- 
crepancy between ICC(2, 1) and ICC(3, I), 
the investigator may be forced to consider 
the latter analytic strategy, even though it 
involves a loss of degrees of freedom and a 
loss of computational simplicity. 
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Decision 3:  What Is the Unit of Reliability? The index corresponding to ICC(1, 1) is 

ICC(1, k) = (BMS - WMS)/BMS. Letting 
The ICC indices discussed so far give the F L  and FU be defined as in Equations 4 and 5 ,  

expected reliability of a single judge's ratings.' 
In  the substantive study (D study), often it is 1 1 
not the individual ratings that are used, but 1 - - < p < l - -  

F L  F u  
rather the mean of m ratings, where m need 
not be equal to k, the number of judges in the is a (1 - a)  - 100% confidence interval for the 
reliability study (G study). In such a case population value of this intraclass correlation. 
the reliability of the mean rating is of interest; The index corresponding to IcC(~,  1) is 
this reliability will always be greater in 
magnitude than the reliability of the individual BMS - ELMS 
ratings, provided the latter is positive (cf. rCC(2, = BMS + (JMS - EMS),%- 
Lord & Novick, 1968). 

Only occasionally is the choice of a mean 
rating as the unit of analysis based on sub- 
stantive grounds. An example of a substantive 
choice is the investigation of the decisions 
(ratings) of a team of physicians, as they are 
found in a hospital setting. More typically, 
an investigator decides to use a mean as a 
unit of analysis because the individual rating 
is too unreliable. In this case, the number of 
observations (say, m) used to form the mean 
should be determined by a reliability study 
in pilot research, for example, as follows. Given 
the lower bound, p ~ ,  on p from Inequality 6 or 
Inequality 7, whichever is appropriate, and 
given a value, say p*, for the minimum accept- 
able value for the reliability coefficient (e.g., 
p* = .75 or 30)) i t  is possible to determine m 
as the smallest integer greater than or equal to 

Once m is determined, either by a reliability 
study or by a choice made on substantive 
grounds, the reliability of the ratings averaged 
over m judges can be estimated using the 
Spearman-Brown formula and the appropriate 
ICC index described earlier. When data from 
m judges are actually collected (e.g., in the D 
study following the G study used to determine 
m), they can be used to estimate the reliabilities 
of the mean ratings in one step, using the 
formulas below. In these applications, k = m. 
The formulas correspond to . ICC(1, 1)) 
ICC(2, 1)) and ICC(3, I), and the significance 
test for each is the same as for their correspond- 
ing single-rater reliability index. 

The confidence interval for this index is most 
easily obtained by using the confidence bounds 
obtained for ICC(2, 1) in the Spearman-Brown 
formula. For example, the lower bound for 
ICC(2, k) is 

where PL** is the lower bound obtained for 
ICC(2, 1). 

For ICC(3, I), the index of consistency for 
the mixed model case, the generalization from 
a single rating to a mean rating reliability is 
not quite as straightforward. Although the 
covariance between two ratings is - ur2/ 
(k - I) ,  the covariance between two means 
based on k judges is (rT2. AS we pointed out 
before, under Case 3 no estimator exists for 
this term. 

If, however, the Judge X Target interaction 
can be assumed to be absent, then the ap- 
propriate index is 

ICC(3, k) = (BMS - EMS)/BMS. 

Letting F L  and FU be defined as in Equations 
8 and 9, 

is .a (1 - a)  - 100% confidence interval for the 
population value of this intraclass correlation. 
ICC(3, k) is equivalent to Cronbach's (1951) 
alpha; when the ratings of observers are 
dichotomous, it is equivalent to the Kuder- 
Richardson (1937) Formula 20. 
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Sometimes the choice of a unit of analysis 
causes a conflict between reliability considera- 
tions and substantive interpretations. A mean 
of k ratings might be needed for reliability, 
but the generalization of interest might be 
individuals. 

For example, Bayes (1972) desired to relate 
ratings of interpersonal warmth to nonverbal 
communication variables. She reported the 
reliability of the warmth ratings based on the 
judgments of 30 observers on 15 targets. 
Because the rating variable that she related 
to the other variables was the mean rating 
over all 30 observers, she correctly reported 
the reliability of the mean ratings. With this 
index, she found that her mean ratings were 
reliable to .90. When she interpreted her 
findings, however, she generalized to single 
observers, not to other groups of 30 observers. 
This generalization may be problematic, since 
the reliability of the individual ratings was 
less than .30-a value the investigator did not 
report. In  such a situation in which the unit 
of analysis is not the same as the unit general- 
ized to, i t  is a good idea to report the relia- 
bilities of both units. 

Conclusion 

It is important to assess the reliability of 
judgments made by observers in order to 
know the extent that measurements are 
measuring anything. Unreliable measurements 
cannot be expected to relate to any other 
variables, and their use in analyses frequently 
violates Statistical assumptions. Intraclass 
correlation coefficients provide measures of 
reliability, but many forms exist and each is 
appropriate only in limited circumstances. 

This article has discussed six forms of the 
intraclass correlation and guidelines for choos- 
ing among them. Important issues in the 
choice of an appropriate index include whether 
the ANOVA design should be one way or two 
way, whether raters are considered fixed or 
random effects, and whether the unit of 
analysis is a single rater or the mean of several 
raters. The discussion has been limited to a 
relatively pure data analysis case, k observers 
rating n targets with no missing data (i.e.. 

each of the n targets is rated by exactly k 
observers). Although we have implicitly limited 
the discussion to continuous rating scales, 
Feldt (1965) has reported that for ICC(3, k) 
a t  least, the use of dichotomous dummy 
variables gives acceptable results. Readers 
interested in agreement indices for discrete 
data, however, should consult the Fleiss 
(1975) review of a dozen coefficients or the 
detailed review of coefficient kappa by Hubert 
(1977). 
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